Execute prepared ResIN bootstrap analysis
Usage
ResIN_boots_execute(
ResIN_boots_prepped,
parallel = FALSE,
detect_cores = TRUE,
core_offset = 0L,
n_cores = 2L,
inorder = FALSE
)
Arguments
- ResIN_boots_prepped
A list of prepared ResIN objects for bootstrapping (outcome of the
ResIN_boots_prepare
function)- parallel
Should the function be executed in parallel using the
foreach
package? Defaults to FALSE. If FALSE, function will execute sequentially in a simple for loop.- detect_cores
Should the number of available CPU cores be automatically detected? Defaults to TRUE and is ignored when parallel is set to FALSE.
- core_offset
Optionally, specify a positive integer offset that is subtracted from the number of automatically detected cores. Defaults to 0L.
- n_cores
Manually specify the number of available CPU cores. Defaults to 2L and is ignored if detect_cores is set to TRUE or if parallel is set to FALSE.
- inorder
Should parallel execution be done in sequential order of the
ResIN_boots_prepped
object?
Examples
## Load the 12-item simulated Likert-type toy dataset
data(lik_data)
# Apply the ResIN function to toy Likert data:
ResIN_obj <- ResIN(lik_data, cor_method = "spearman", network_stats = TRUE,
generate_ggplot = FALSE)
#> [1] "not generated"
if (FALSE) { # \dontrun{
# Prepare for bootstrapping
prepped_boots <- ResIN_boots_prepare(ResIN_obj, n=5000, boots_type="permute")
# Execute the prepared bootstrap list
executed_boots <- ResIN_boots_execute(prepped_boots, parallel = TRUE, detect_cores = TRUE)
# Extract results - here for example, the network (global)-clustering coefficient
ResIN_boots_extract(executed_boots, what = "global_clustering", summarize_results = TRUE)
} # }